## Is 2063 a prime number?

Yes, 2063 is a prime number.

Indeed, the definition of a prime numbers is to have only two distinct positive divisors, 1 and itself. A number is a divisor of another number when the remainder of Euclid’s division of the second one by the first one is zero. Concerning the number 2063, the only two divisors are 1 and 2063. Therefore 2063 is a prime number.

As a consequence, 2063 is only a multiple of 1 and 2063.

Therefore year 2063 will be a prime year.

Since 2063 is a prime number, 2063 is also a deficient number, that is to say 2063 is a natural integer that is strictly larger than the sum of its proper divisors, i.e., the divisors of 2063 without 2063 itself (that is 1, by definition!).

## Parity of 2063

2063 is an odd number, because it is not evenly divisible by 2.

## Is 2063 a perfect square number?

A number is a perfect square (or a square number) if its square root is an integer; that is to say, it is the product of an integer with itself. Here, the square root of 2063 is about 45.420.

Thus, the square root of 2063 is not an integer, and therefore 2063 is not a square number.

Anyway, 2063 is a prime number, and a prime number cannot be a perfect square.

## What is the square number of 2063?

The square of a number (here 2063) is the result of the product of this number (2063) by itself (i.e., 2063 × 2063); the square of 2063 is sometimes called "raising 2063 to the power 2", or "2063 squared".

The square of 2063 is 4 255 969 because 2063 × 2063 = 2063^{2} = 4 255 969.

As a consequence, 2063 is the square root of 4 255 969.

## Number of digits of 2063

2063 is a number with 4 digits.

## What are the multiples of 2063?

The multiples of 2063 are all integers evenly divisible by 2063, that is all numbers such that the remainder of the division by 2063 is zero. There are infinitely many multiples of 2063. The smallest multiples of 2063 are:

- 0: indeed, 0 is divisible by any natural number, and it is thus a multiple of 2063 too, since 0 × 2063 = 0
- 2063: indeed, 2063 is a multiple of itself, since 2063 is evenly divisible by 2063 (we have 2063 / 2063 = 1, so the remainder of this division is indeed zero)
- 4 126: indeed, 4 126 = 2063 × 2
- 6 189: indeed, 6 189 = 2063 × 3
- 8 252: indeed, 8 252 = 2063 × 4
- 10 315: indeed, 10 315 = 2063 × 5
- etc.