Is 35 a prime number? What are the divisors of 35?

## Parity of 35

35 is an odd number, because it is not evenly divisible by 2.

Find out more:

## Is 35 a perfect square number?

A number is a perfect square (or a square number) if its square root is an integer; that is to say, it is the product of an integer with itself. Here, the square root of 35 is about 5.916.

Thus, the square root of 35 is not an integer, and therefore 35 is not a square number.

## What is the square number of 35?

The square of a number (here 35) is the result of the product of this number (35) by itself (i.e., 35 × 35); the square of 35 is sometimes called "raising 35 to the power 2", or "35 squared".

The square of 35 is 1 225 because 35 × 35 = 352 = 1 225.

As a consequence, 35 is the square root of 1 225.

## Number of digits of 35

35 is a number with 2 digits.

## What are the multiples of 35?

The multiples of 35 are all integers evenly divisible by 35, that is all numbers such that the remainder of the division by 35 is zero. There are infinitely many multiples of 35. The smallest multiples of 35 are:

• 0: indeed, 0 is divisible by any natural number, and it is thus a multiple of 35 too, since 0 × 35 = 0
• 35: indeed, 35 is a multiple of itself, since 35 is evenly divisible by 35 (we have 35 / 35 = 1, so the remainder of this division is indeed zero)
• 70: indeed, 70 = 35 × 2
• 105: indeed, 105 = 35 × 3
• 140: indeed, 140 = 35 × 4
• 175: indeed, 175 = 35 × 5
• etc.

## How to determine whether an integer is a prime number?

To determine the primality of a number, several algorithms can be used. The most naive technique is to test all divisors strictly smaller to the number of which we want to determine the primality (here 35). First, we can eliminate all even numbers greater than 2 (and hence 4, 6, 8…). Then, we can stop this check when we reach the square root of the number of which we want to determine the primality (here the square root is about 5.916). Historically, the sieve of Eratosthenes (dating from the Greek mathematics) implements this technique in a relatively efficient manner.

More modern techniques include the sieve of Atkin, probabilistic algorithms, and the cyclotomic AKS test.

## Numbers near 35

• Preceding numbers: …33, 34
• Following numbers: 36, 37

### Nearest numbers from 35

• Preceding prime number: 31
• Following prime number: 37
Find out whether some integer is a prime number