## Is 97 a prime number?

It is possible to find out using mathematical methods whether a given integer is a prime number or not.

For 97, the answer is: yes, 97 is a prime number because it has only two distinct divisors: 1 and itself (97).

As a consequence, 97 is only a multiple of 1 and 97..

Since 97 is a prime number, 97 is also a deficient number, that is to say 97 is a natural integer that is strictly larger than the sum of its proper divisors, i.e., the divisors of 97 without 97 itself (that is 1, by definition!).

## Parity of 97

97 is an odd number, because it is not evenly divisible by 2.

## Is 97 a perfect square number?

A number is a perfect square (or a square number) if its square root is an integer; that is to say, it is the product of an integer with itself. Here, the square root of 97 is about 9.849.

Thus, the square root of 97 is not an integer, and therefore 97 is not a square number.

Anyway, 97 is a prime number, and a prime number cannot be a perfect square.

## What is the square number of 97?

The square of a number (here 97) is the result of the product of this number (97) by itself (i.e., 97 × 97); the square of 97 is sometimes called "raising 97 to the power 2", or "97 squared".

The square of 97 is 9 409 because 97 × 97 = 97^{2} = 9 409.

As a consequence, 97 is the square root of 9 409.

## Number of digits of 97

97 is a number with 2 digits.

## What are the multiples of 97?

The multiples of 97 are all integers evenly divisible by 97, that is all numbers such that the remainder of the division by 97 is zero. There are infinitely many multiples of 97. The smallest multiples of 97 are:

- 0: indeed, 0 is divisible by any natural number, and it is thus a multiple of 97 too, since 0 × 97 = 0
- 97: indeed, 97 is a multiple of itself, since 97 is evenly divisible by 97 (we have 97 / 97 = 1, so the remainder of this division is indeed zero)
- 194: indeed, 194 = 97 × 2
- 291: indeed, 291 = 97 × 3
- 388: indeed, 388 = 97 × 4
- 485: indeed, 485 = 97 × 5
- etc.

## How to determine whether an integer is a prime number?

To determine the primality of a number, several algorithms can be used. The most naive technique is to test all divisors strictly smaller to the number of which we want to determine the primality (here 97). First, we can eliminate all even numbers greater than 2 (and hence 4, 6, 8…). Then, we can stop this check when we reach the square root of the number of which we want to determine the primality (here the square root is about 9.849). Historically, the sieve of Eratosthenes (dating from the Greek mathematics) implements this technique in a relatively efficient manner.

More modern techniques include the sieve of Atkin, probabilistic algorithms, and the cyclotomic AKS test.