Is 913 a prime number? What are the divisors of 913?

Parity of 913

913 is an odd number, because it is not evenly divisible by 2.

Find out more:

Is 913 a perfect square number?

A number is a perfect square (or a square number) if its square root is an integer; that is to say, it is the product of an integer with itself. Here, the square root of 913 is about 30.216.

Thus, the square root of 913 is not an integer, and therefore 913 is not a square number.

What is the square number of 913?

The square of a number (here 913) is the result of the product of this number (913) by itself (i.e., 913 × 913); the square of 913 is sometimes called "raising 913 to the power 2", or "913 squared".

The square of 913 is 833 569 because 913 × 913 = 9132 = 833 569.

As a consequence, 913 is the square root of 833 569.

Number of digits of 913

913 is a number with 3 digits.

What are the multiples of 913?

The multiples of 913 are all integers evenly divisible by 913, that is all numbers such that the remainder of the division by 913 is zero. There are infinitely many multiples of 913. The smallest multiples of 913 are:

How to determine whether an integer is a prime number?

To determine the primality of a number, several algorithms can be used. The most naive technique is to test all divisors strictly smaller to the number of which we want to determine the primality (here 913). First, we can eliminate all even numbers greater than 2 (and hence 4, 6, 8…). Then, we can stop this check when we reach the square root of the number of which we want to determine the primality (here the square root is about 30.216). Historically, the sieve of Eratosthenes (dating from the Greek mathematics) implements this technique in a relatively efficient manner.

More modern techniques include the sieve of Atkin, probabilistic algorithms, and the cyclotomic AKS test.

Numbers near 913

  • Preceding numbers: …911, 912
  • Following numbers: 914, 915

Nearest numbers from 913

  • Preceding prime number: 911
  • Following prime number: 919
Find out whether some integer is a prime number